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BACT Program Overview
• Benchmark Aeroelastic Models Program

– study physics of aeroelastic phenomena
» classical transonic flutter “bucket”
» shock induced instabilities
» dynamic vortex-structure interaction

– data to validate steady and unsteady aero codes
– active control of aeroelastic systems

• Benchmark Active Control Technology (BACT)
– high quality unsteady aero data near flutter 
– active flutter suppression

» innovative control concepts - spoilers and multiple effectors
» innovative design methods - H∞, µ-synthesis, neural nets

– validate on-line controller performance evaluation tool
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BACT System Overview
• Pitch and Plunge Apparatus (PAPA)

– 2-DOF :  pitch and plunge
– 5-6 deg max. rotation
– 1.5 inch max. deflection

• Wind-Tunnel Model
– rigid NACA 0012 airfoil
– AR = 2   (c = 16 in.,  b = 32 in.)

• Control Surfaces
– span = 0.3b, centered at 0.6b
– upper and lower spoilers

» chord = 0.15c
» 45 deg max. deflection

– trailing edge flap surface
» chord = 0.25c
» ±15 deg max. deflection

– hydraulic actuators

• Instrumentation
– 4 accelerometers in corners of wing
– pitch angle sensors
– 70 pressure transducers

» 58 @ 0.6b  (incl. control surfaces)
» 17 @ 0.4b

– add’l transducers on splitter plate
– accels and strain gauges on PAPA
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Flutter Suppression Control Laws
• Design Objectives

– Stability Over Entire Operating Range
– Acceptable Control Activity
– Simple Implementation

• Traditionally Designed SISO Controllers
– Demonstrate Flutter Suppression Using Spoilers
– Develop Performance Specifications
– Coupled SISO Controllers

• Robust MIMO Controllers
– Demonstrate Multivariable 

Flutter Suppression
– Evaluate Enhanced 

Robustness Properties

G1(s)

G2(s)

G11(s)   G12(s)

G21(s)   G22(s)

US

TEz1

z2

US

TEzLE

zTE

..

..

..

..



Langley Research Center
Flight Dynamics and Control Division

6

MIMO Controller Design Methods
• Robustness

– Maintain Stability and Performance Subject to Model Variation
– Variations Include

» Operating Condition
» Model Error/Uncertainty

• H∞ Control
– Robust Stability
– Nominal Performance

• µ-Synthesis
– Robust Stability
– Robust Performance
– Structured Uncertainty
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Modeling for Flutter Suppression

• Model elements
– structural dynamics
– steady and unsteady aerodynamics (including control effects)
– turbulence effects
– actuators, sensors, controller effects
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P-∆  Model

G (s)W (s)

W (s)

W (s)

W (s)

G (s)

F(s)

g

0

o

p

c

y

w

y

y

g

z~

y
~

u
~

u

+
+

+

+



Langley Research Center
Flight Dynamics and Control Division

9

Plant Model
• Averaged over unstable conditions  (q=155-195 psf)
• Frequency weighted internally balanced reduction
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Uncertainty Model
• Based on reduced averaged model and ensemble
• Output multiplicative form
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Weighting Functions
• Performance :

• Control :

• Output :

max ˙ ̇ , ˙ ̇ h ( ) < 0.01g

max TE , US( ) < 1.0 deg 3.0 deg( )
Wy = 1.0e − 4
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SISO Control Law
• Trailing Edge Flap Controller
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Design Process

• Apply design algorithms
– H∞ and µ-synthesis

– Used µ-Analysis and Synthesis Toolbox (for MATLAB)

• Reduce controller order
– required order - 24 states (or less)

– frequency weighted internally balanced reduction

• Augment washout filters
– low frequency attenuation was insufficient

– significant biases and drift in accelerometer amps

• Discretize control law
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Control Laws
• H∞ Design #1
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Control Laws
• µ-Synthesis Design #1
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Robustness Analysis
• “Unit” Uncertainty
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Transient Response - Example
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Experimental Results
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Concluding Remarks
• Spoilers for Flutter Suppression

– Representative of “Innovative Control Effectors”

– Additional Design Freedom

– Enhanced Redundancy 

• Robust Multivariable Flutter Suppression
– Enhanced Performance (over SISO designs)

– Enhanced Robustness

• Design Issues

– Difficulty Accomodating Washout Filters

– Difficulty Accomodating Model Order Limitations

– Sensitivity to Performance Specifications

– Numerical Algorithms and Convergence Issues


